xG expliqué
What is xG?
Very simply, xG (or expected goals) is the probability that a shot will result in a goal based on the characteristics of that shot and the events leading up to it. Some of these characteristics/variables include:
- Location of shooter: How far was it from the goal and at what angle on the pitch?
- Body part: Was it a header or off the shooter's foot?
- Type of pass: Was it from a through ball, cross, set piece, etc?
- Type of attack: Was it from an established possession? Was it off a rebound? Did the defense have time to get in position? Did it follow a dribble?
Every shot is compared to thousands of shots with similar characteristics to determine the probability that this shot will result in a goal. That probability is the expected goal total. An xG of 0 is a certain miss, while an xG of 1 is a certain goal. An xG of .5 would indicate that if identical shots were attempted 10 times, 5 would be expected to result in a goal.
There are a number of xG models that use similar techniques and variables, which attempt to reach the same conclusion. The model that FBref uses is provided by Opta. Opta's xG model includes a number of factors above just factors such as the location and angle. Their model also accounts for the clarity of the shooter's path to the goal, the amount of pressure the shooter is under from defensive players, the position of the goalkeeper, and more. That means that their xG model factors in the defense and goalkeeping when determining the odds of the shot reaching the goal.
Take this Diego Jota goal vs Southampton for example. The shot was taken directly in front of the goal from very close range. It's a very good chance. Using an older model that accounts for location, angle, pass type, and such, it would have a 0.68 xG. However, Opta's model also accounts for the fact that the goalkeeper is out of position and there's no defender in the way, which boosts the xG of this shot even higher, to 0.90.
xG does not take into account the quality of player(s) involved in a particular play. It is an estimate of how the average player or team would perform in a similar situation.
How xG is used
xG has many uses. Some examples are:
- Comparing xG to actual goals scored can indicate a player's shooting ability or luck. A player who consistently scores more goals than their total xG probably has an above average shooting/finishing ability.
- A team's xG difference (xG minus xG allowed) can indicate how a team should be performing. A negative goal difference but a positive xG difference might indicate a team has experienced poor luck or has below average finishing ability.
- xG can be used to assess a team's abilities in various situations, such as open play, from a free kick, corner kick, etc. For example, a team that has allowed more goals from free kicks than their xGA from free kicks is probably below average at defending these set pieces.
- A team's xGA (xG allowed) can indicate a team's ability to prevent scoring chances. A team that limits their opponent's shots and more importantly, limits their ability to take high probability shots will have a lower xGA.
Penalty Kicks
Each penalty kick is worth .79 xG since all penalty kicks share the same characteristics. Comparing a player's goals from penalty kicks to their penalty kick xG can indicate a player's penalty kicking ability. Likewise, we can do the same for goalkeepers in these situations.
FBref's xG totals include penalty kicks unless otherwise noted. For xG excluding PK, we recommend using npxG (non-penalty expected goals).
How we calculate xG totals for a single offensive possession
In some cases, a player or team's xG totals do not equal the sum of their shots. For instance, a team may attempt multiple shots in a single possession, but it is likely that these shots are contingent upon the outcome of the previous shot(s).
Take for example, this match between Schalke 04 and Nürnberg:
In the 78th minute, Nürnberg attempted three shots which ultimately led to a goal. Hanno Behrens attempts a shot that is saved, but he is able to take a second shot as the ball is deflected off the defender. The second shot goes off the woodwork, which allows Adam Zreľák to easily tap it in. According to StatsBomb's expected goals model:
- Behrens' first shot with the goalkeeper in his way = .41 xG
- Behrens' second shot with the goalkeeper out of position but a defender in the way = .47 xG
- Zreľák's shot with an open net = .79 xG
The sum of these three shots is 1.67 expected goals, even though it is impossible to score more than one goal in a single move. To solve this problem, we find the probability that the defending team does not allow a goal in this possession. In this case, the calculation is:
(1 - .41) x (1 - .47) x (1 - .79) = .0657
or a 6.57% probability that Schalke does not allow a goal.
To find Nürnberg's xG, we simply subtract that probability from 1:
1 - .0657 = .9343 xG
In other words, we estimate that an average team in a similar situation would be expected to score a goal 93.43% of the time.
We use a similar method when calculating xG for individual players. Adam Zreľák receives .79 xG from his single shot while Hanno Behrens receives:
1 - (1 - .41) x (1 - .47) = .6873 xG
This shows why a team or player's total xG may not equal the sum of the xG from their shots and why a team's total xG may not equal the sum of the xG from their players.
Possessions that include a penalty kick
Similarly, we include shots taken from a rebound after a penalty kick with xG from penalty kicks. Take this Marco Reus penalty kick for example:
- As mentioned above, the penalty kick attempt = .79 xG
- The second shot after the rebound, from 2 yards and with the goalkeeper unrecovered from the save = .92 xG
Since the second shot is a result of the first, we use the same probabilistic method in the previous example. Rather than a total 1.71 xG (.79 + .92), the calculation is:
1 - (1 - .79) * (1 - .92) = .9832 expected goals
However, since the second shot is also considered to be a part of the penalty kick xG, Reus gets 0 npxG (non-penalty expected goals) on this play.
Note: We treat corner kicks and free kicks as a new possession, not a continuation of the previous possession, but are continuing to study the issue.
What is Post-Shot xG (PSxG)?
Regular xG, or what can be considered "Pre-Shot xG", is calculated considering all shots at the time of the shot without knowing the quality of the shot attempt. It not only includes shots that are on target, but also shots that are deflected or off target. Post-Shot xG is calculated after the shot has been taken, once it is known that the shot is on-target, taking into account the quality of the shot. As with xG, PSxG is provided by Opta and is further explained here.
All shots which are off target will have a PSxG of zero since there is a 0% chance that this trajectory will lead to a goal.
When evaluating a goalkeeper's shot stopping ability, we only want to include shots that are on target since these are the shots where the goalkeeper can have an impact. Therefore, we use PSxG to estimate the quality of shots in which they have faced.
Quel est le xA (passes décisives attendues) et le xAG (buts assistés attendus) ? Comment diffèrent-ils ?
xA, ou le nombre de passes décisives attendues, est la probabilité qu’une passe réussie devienne un « assist ». Cette statistique, développée par Opta, attribue une probabilité à toutes les passes, en fonction du type de passe, de l’emplacement sur le terrain, de la phase de jeu et de la distance parcourue. Les joueurs reçoivent un xA pour chaque passe effectuée, qu’un tir ait lieu ou non.
Afin d’isoler le xG des passes assistant un tir, il existe les buts assistés attendus (xAG). Cela indique la capacité d’un joueur à créer des opportunités pour marquer un but sans avoir à compter sur le résultat actuel du tir ou sur la chance/la capacité du tireur. Le joueurs reçoivent un xAG uniquement quand un tir est effectué après une passe décisive.
Nous utilisons xG + xAG pour la contribution aux buts puisque la contribution aux buts des joueurs est généralement égale à la somme des buts et des passes décisives, ce qui correspond mieux à cette norme.
Jusqu’en octobre 2022, nous utilisions xA pour « buts assistés attendus » (aujourd’hui xAG). Lorsque Opta est devenu notre nouveau fournisseur de donnée, ils ont fourni leur version de xA décrite ci-dessus. Nous avons donc changé le nom en xAG. Opta : que sont les « passes décisives attendues ».
Les xG d'équipe, xG de l'adversaire et différentiel xG peuvent être trouvés dans les tableaux des championnats, comme ceci : Les xG du joueur, npxG & xA peuvent être trouvés sur les pages des équipes, comme ceci : Les buts attendus peuvent aussi être trouvés sur différentes pages telles que les stats du joueur en championnat, les résumés de match, les pages du joueur et les données de match du joueur.Où trouver le xG
Clt Équipe MJ V N D BM BE DB Pts xG xGA xGD 1 Manchester City 38 32 2 4 95 23 +72 98 84.3 24.7 +59.6 2 Liverpool 38 30 7 1 89 22 +67 97 73.7 28.8 +44.9 3 Chelsea 38 21 9 8 63 39 +24 72 58.6 36.4 +22.2 4 Tottenham 38 23 2 13 67 39 +28 71 54.9 47.1 +7.8 5 Arsenal 38 21 7 10 73 51 +22 70 60.1 54.2 +5.8 6 Manchester Utd 38 19 9 10 65 54 +11 66 61.4 50.6 +10.8 7 Wolves 38 16 9 13 47 46 +1 57 52.1 42.1 +10.1 8 Everton 38 15 9 14 54 46 +8 54 49.7 45.7 +4.0 9 Leicester City 38 15 7 16 51 48 +3 52 52.4 43.7 +8.7 10 West Ham 38 15 7 16 52 55 -3 52 47.6 61.9 -14.3 11 Watford 38 14 8 16 52 59 -7 50 48.2 59.2 -11.0 12 Crystal Palace 38 14 7 17 51 53 -2 49 47.6 50.1 -2.5 13 Newcastle Utd 38 12 9 17 42 48 -6 45 39.1 53.6 -14.5 14 Bournemouth 38 13 6 19 56 70 -14 45 53.3 57.2 -3.9 15 Burnley 38 11 7 20 45 68 -23 40 44.4 62.1 -17.7 16 Southampton 38 9 12 17 45 65 -20 39 46.9 55.1 -8.2 17 Brighton 38 9 9 20 35 60 -25 36 35.3 59.1 -23.8 18 Cardiff City 38 10 4 24 34 69 -35 34 42.4 61.5 -19.1 19 Fulham 38 7 5 26 34 81 -47 26 41.3 68.2 -26.8 20 Huddersfield 38 3 7 28 22 76 -54 16 28.8 60.9 -32.2
Temps de jeu Performance Attendu Progression Par 90 minutes Joueur Nation Pos Âge MJ Titulaire Min 90 Buts PD B+PD B-PénM PénM PénT CJ CR xG npxG xAG npxG+xAG PrgC PrgP PrgR Ederson br BRA GB 24 38 38 3,420 38.0 0 1 1 0 0 0 2 0 0.0 0.0 0.1 0.1 0 3 0 0.00 0.03 0.03 0.00 0.03 0.00 0.00 0.00 0.00 0.00 Aymeric Laporte es ESP DF 24 35 34 3,057 34.0 3 3 6 3 0 0 3 0 3.0 3.0 0.8 3.8 94 294 9 0.09 0.09 0.18 0.09 0.18 0.09 0.02 0.11 0.09 0.11 Bernardo Silva pt POR MT,AT 23 36 31 2,854 31.7 7 7 14 7 0 0 3 0 7.4 7.4 7.8 15.2 152 156 277 0.22 0.22 0.44 0.22 0.44 0.23 0.25 0.48 0.23 0.48 Raheem Sterling eng ENG AT 23 34 31 2,771 30.8 17 9 26 17 0 0 3 0 13.7 13.7 9.6 23.3 155 87 436 0.55 0.29 0.84 0.55 0.84 0.44 0.31 0.76 0.44 0.76 Sergio Agüero ar ARG AT 30 33 31 2,459 27.3 21 8 29 19 2 2 4 0 18.1 16.5 5.0 21.5 81 76 253 0.77 0.29 1.06 0.70 0.99 0.66 0.18 0.85 0.60 0.79 Kyle Walker eng ENG DF 28 33 30 2,779 30.9 1 1 2 1 0 0 3 0 0.8 0.8 1.9 2.7 83 220 92 0.03 0.03 0.06 0.03 0.06 0.03 0.06 0.09 0.03 0.09 David Silva es ESP MT 32 33 28 2,401 26.7 6 8 14 6 0 0 2 0 7.8 7.8 8.5 16.3 118 270 222 0.22 0.30 0.52 0.22 0.52 0.29 0.32 0.61 0.29 0.61 Fernandinho br BRA MT 33 29 27 2,377 26.4 1 3 4 1 0 0 5 0 1.6 1.6 3.0 4.5 58 236 29 0.04 0.11 0.15 0.04 0.15 0.06 0.11 0.17 0.06 0.17 İlkay Gündoğan de GER MT 27 31 23 2,137 23.7 6 3 9 6 0 0 3 0 4.1 4.1 4.3 8.4 82 205 91 0.25 0.13 0.38 0.25 0.38 0.17 0.18 0.35 0.17 0.35 Leroy Sané de GER AT 22 31 21 1,867 20.7 10 10 20 10 0 0 1 0 6.7 6.7 7.4 14.1 84 67 341 0.48 0.48 0.96 0.48 0.96 0.32 0.36 0.68 0.32 0.68 John Stones eng ENG DF 24 24 20 1,764 19.6 0 0 0 0 0 0 1 0 0.3 0.3 0.2 0.6 44 118 5 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.03 0.02 0.03 Riyad Mahrez dz ALG AT,MT 27 27 14 1,343 14.9 7 4 11 7 0 1 0 0 5.5 4.7 4.6 9.3 87 73 191 0.47 0.27 0.74 0.47 0.74 0.37 0.31 0.68 0.32 0.62 Nicolás Otamendi ar ARG DF 30 18 14 1,236 13.7 0 0 0 0 0 0 1 0 1.3 1.3 0.2 1.5 27 92 3 0.00 0.00 0.00 0.00 0.00 0.10 0.01 0.11 0.10 0.11 Oleksandr Zinchenko ua UKR DF 21 14 14 1,151 12.8 0 3 3 0 0 0 1 0 0.2 0.2 1.5 1.7 47 95 94 0.00 0.23 0.23 0.00 0.23 0.01 0.12 0.13 0.01 0.13 Vincent Kompany be BEL DF 32 17 13 1,224 13.6 1 0 1 1 0 0 6 0 0.3 0.3 0.0 0.3 17 83 3 0.07 0.00 0.07 0.07 0.07 0.02 0.00 0.02 0.02 0.02 Kevin De Bruyne be BEL MT 27 19 11 975 10.8 2 2 4 2 0 0 2 0 1.4 1.4 5.7 7.0 50 109 88 0.18 0.18 0.37 0.18 0.37 0.13 0.52 0.65 0.13 0.65 Benjamin Mendy fr FRA DF 24 10 10 900 10.0 0 5 5 0 0 0 1 0 0.2 0.2 1.6 1.8 48 70 59 0.00 0.50 0.50 0.00 0.50 0.02 0.16 0.18 0.02 0.18 Danilo br BRA DF 27 11 9 807 9.0 1 0 1 1 0 0 1 0 0.4 0.4 0.2 0.6 20 77 33 0.11 0.00 0.11 0.11 0.11 0.05 0.02 0.07 0.05 0.07 Gabriel Jesus br BRA AT 21 29 8 1,036 11.5 7 3 10 6 1 1 1 0 11.2 10.5 2.3 12.7 35 21 128 0.61 0.26 0.87 0.52 0.78 0.97 0.20 1.17 0.91 1.11 Fabian Delph eng ENG DF 28 11 8 725 8.1 0 1 1 0 0 0 1 1 0.1 0.1 0.3 0.4 20 59 23 0.00 0.12 0.12 0.00 0.12 0.01 0.04 0.06 0.01 0.06 Phil Foden eng ENG MT 18 13 3 335 3.7 1 0 1 1 0 0 0 0 2.1 2.1 0.9 3.0 23 18 35 0.27 0.00 0.27 0.27 0.27 0.57 0.23 0.80 0.57 0.80 Philippe Sandler nl NED DF 21 0 0 Arijanet Muric xk KVX GB 19 0 0 Claudio Bravo cl CHI GB 35 0 0 Total de l'équipe 26.7 38 418 3,420 38.0 91 71 162 88 3 4 44 1 84.3 81.3 65.5 146.7 1325 2429 2412 2.39 1.87 4.26 2.32 4.18 2.22 1.72 3.94 2.14 3.86 Total de l'équipe 26.7 38 418 3,420 38.0 91 71 162 88 3 4 44 1 84.3 81.3 65.5 146.7 1325 2429 2412 2.39 1.87 4.26 2.32 4.18 2.22 1.72 3.94 2.14 3.86
Les compétitions FBref avec les données xG
- Coupe du monde de la FIFA (2018 to 2022)
- Coupe du monde féminine FIFA (2019 to 2023)
- Copa America (2019 to 2024)
- Copa Libertadores (2019 to 2024)
- Euro féminin de l'UEFA (2022)
- Europa League de l'UEFA (2017-2018 to 2024-2025)
- Ligue des Champions féminines de l'UEFA (2021-2022 to 2024-2025)
- Ligue des champions UEFA (2017-2018 to 2024-2025)
- Ligue des conférences de l'UEFA Europa (2021-2022 to 2024-2025)
- UEFA European Football Championship (2021 to 2024)
- American Major League Soccer (2018 to 2024)
- American National Women's Soccer League (2019 to 2024)
- Argentine Copa de la Liga Profesional (2021 to 2024)
- Argentine Primera (2016-2017 to 2024)
- Australian A-League Women (2018-2019 to 2023-2024)
- Belgian Pro League (2017-2018 to 2024-2025)
- Brazilian Série A (2019 to 2024)
- Dutch Eredivisie (2018-2019 to 2024-2025)
- English Championship (2018-2019 to 2024-2025)
- English Premier League (2017-2018 to 2024-2025)
- English Women's Super League (2018-2019 to 2024-2025)
- French Ligue 1 (2017-2018 to 2024-2025)
- French Ligue 2 (2017-2018 to 2024-2025)
- French Première Ligue (2021-2022 to 2024-2025)
- German 2.Bundesliga (2017-2018 to 2024-2025)
- German Bundesliga (2017-2018 to 2024-2025)
- German Frauen-Bundesliga (2022-2023 to 2024-2025)
- Italian Serie A (2020-2021 to 2024-2025)
- Italian Serie A (2017-2018 to 2024-2025)
- Italian Serie B (2018-2019 to 2024-2025)
- Mexican Liga MX (2018-2019 to 2024-2025)
- NWSL Challenge Cup (2020 to 2024)
- NWSL Fall Series (2020)
- Portuguese Primeira Liga (2018-2019 to 2024-2025)
- Spanish La Liga (2017-2018 to 2024-2025)
- Spanish Liga F (2022-2023 to 2024-2025)
- Spanish Segunda (2017-2018 to 2024-2025)
Nous sommes sur les réseaux sociaux... pour les fans de stats
Chaque compte de réseaux sociaux Sports Reference
Dernière mise à jour du site : Monday, September 16, 5:59AM
Questions, commentaires, avis ou corrections ?
Abonnez-vous à notre bulletin d'information gratuit par e-mail
Abonnez-vous à Stathead FBref : Bénéficiez de votre premier mois GRATUIT
Votre accès illimité à la base de données FBref
Vous possédez un site web sportif ? Ou vous écrivez sur le sport ? Nous avons des outils et des ressources qui peuvent vous aider à utiliser les données sportives. En savoir plus.